organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andreas Fischer

Inorganic Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden

Correspondence e-mail: andif@inorg.kth.se

Key indicators

Single-crystal X-ray study T = 297 K Mean σ (C–C) = 0.008 Å R factor = 0.049 wR factor = 0.081 Data-to-parameter ratio = 22.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(R)-1-Phenylethanaminium bromide

The title compound, $C_8H_{12}N^+ \cdot Br^-$, was obtained from an aqueous solution of (*R*)-1-phenylethanamine and racemic 2,3-dibromosuccinic acid. It features a three-dimensional network of N-H···Br hydrogen bonds.

Received 17 May 2006 Accepted 24 May 2006

Comment

We are currently studying the crystal chemistry of 2,3dibromosuccinic acids and their salts and recently reported the crystal structure of (2R,3S)-dibromosuccinic acid (Eriksson *et al.*, 2006). An attempt to crystallize the phenylethanaminium salt of (R,R)-dibromosuccinic acid yielded the compound (R)-1-phenylethanaminium–(S,S)-2,3-dibromosuccinate–(R,R)-2,3-dibromosuccinic acid–water (2/1/1/2) (Fischer, 2006). This compound had been obtained from half an equivalent of the amine and racemic 2,3-dibromosuccinic acid in aqueous solution. The reaction of the acid with an equimolar amount of the amine yielded a yellow amorphous precipitate. From the remaining solution, crystals of the title compound were obtained upon evaporation at 323 K.

The structure features (R)-1-phenylethanaminium cations, whose geometry is unexceptional, and bromide anions (Fig. 1). The most prominent feature in the crystal structure is the hydrogen-bonding pattern (Fig. 2 and Table 1). Each NH hydrogen acts a hydrogen-bond donor. Hence, three hydrogen bonds are formed between N and three different bromide ions; each bromide ion functions in turn as an acceptor for three hydrogen bonds, yielding a layered network parallel to the *ab* plane (Fig. 2).

Experimental

Racemic 2,3-dibromosuccinic acid was prepared as described by Fischer (2006). The acid (282 mg) was mixed with the (R)-pheny-lethanamine [0.26 (1) ml, Fluka, purum] in demineralized water (5 ml). The solution was heated to 323 K. Almost immediately, precipitation occurred and this was filtered off. (In an examination with X-ray powder diffractometry, it turned out to be amorphous. Attempts to obtain single crystals from this yellow phase have so far

© 2006 International Union of Crystallography All rights reserved been unsuccessful.) The remaining solution was left on the heating plate at 323 K. Within a day, single crystals of the title compound were obtained.

Crystal data

 $C_8H_{12}N^+ \cdot Br^ M_r = 202.10$ Orthorhombic, $P2_12_12_1$ a = 5.5319 (9) Å b = 8.6962 (14) Å c = 19.364 (4) Å V = 931.5 (3) Å³

Data collection

Bruker–Nonius KappaCCD diffractometer ω scans Absorption correction: none 17585 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.081$ S = 1.162122 reflections 93 parameters H-atom parameters constrained Z = 4 $D_x = 1.441 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 4.35 \text{ mm}^{-1}$ T = 297 KNeedle, colourless $0.16 \times 0.04 \times 0.03 \text{ mm}$

2122 independent reflections 1500 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.116$ $\theta_{\text{max}} = 27.5^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0116P)^{2} + 0.763P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.49 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.35 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 845 Friedel pairs Flack parameter: 0.01 (3)

Table 1

Hydrogen-bond	geometry	(Å,	°)

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
N1-H1A···Br1 ⁱ	0.89	2.51	3.379 (4)	166
$N1-H1B\cdots Br1^{ii}$	0.89	2.40	3.268 (4)	164
$N1 - H1C \cdots Br1^{iii}$	0.89	2.46	3.347 (4)	173
Summature and and (i)		(;;)	1 - 1 3. (:::)	

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) x, y + 1, z.

H atoms were placed at calculated positions and refined using a riding model with C–H = 0.93 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, C–H = 0.98 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for CH, C–H = 0.96 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃, and N–H = 0.89 Å, $U_{iso}(H) = 1.5U_{eq}(N)$ for NH.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DIRAX/LSQ* (Duisenberg, 1992); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *MAXUS* (Mackay *et al.*, 1999).

The Swedish Research Council (VR) is acknowledged for providing funding for the single-crystal diffractometer.

References

Brandenburg, K. (2006). *DIAMOND*. Release 3.1b. Crystal Impact GbR, Bonn, Germany.

Figure 1

The asymmetric unit of (R)-1-phenylethanaminium bromide. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The hydrogen-bonding network in the title compound. Hydrogen bonds are dashed. The cation in the asymmetric unit is indicated by blue bonds. All C-bound H atoms have been omitted.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.

- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Eriksson, M., Fischer, A., Lind, J. & Zazzi, Å. (2006). Acta Cryst. E62, o200o201.
- Fischer, A. (2006). Acta Cryst. E62, o1281-o1283.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). MAXUS. Bruker–Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.